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A linear oscillator coupled to a nonlinear field was studied using a mlxed anaiytic-numerical 
matching scheme. An approximate causal solution was constructed in the radiation zone and 
matched to a numerical solution obtained using a finite differencing scheme in the inner zone. 
The requirement that the two solutions agree in the overlap region determined the arbitrary 
function in the retarded solution and at the same time allowed one to extend the numericai 
scheme arbitrari!y into the future. The late time behavior of the system was investigated using 
a variety of initial conditions. In all the cases studied this behavior was found to be indepen- 
dent of which initial conditions were used. Also, it was shown that the linearized “monopole 
energy loss formula” breaks down in cases involving either fast motions or strong non- 
linearities. NJ:; 1988 kademic Press. Inc. 

I. INTRODUCTION 

Since they are nonlinear, the Einstein equations of general relativity are not easily 
integrated analytically. Only in very special cases can one actually find exact closed 
form solutions and it often turns out that such solutions defy any physical inter- 
pretation. In spite of this difficulty much information has been aquired through the 
use of approximate methods which formally expand the field equations in terms of 
some small expansion parameter. These approximation techniques then allow one 
lo solve the equations iteratively taking the noniinearities into account at 
progressively higher orders in the expansion parameter. This method has undergone 
considerable refinement in the past decades and has yielded such an exceptional 
agreement with the observed motions of the binary pulsar PSR 1913 + 16 that the 
system can be considered the first (indirect) observational evidence of the existence 
sf gravitational radiation [ 11. 

The important contribution that made this progress realizable was the 
recognition that the approximate analytic calculation could be simplified through 
the use of several expansion parameters. As a consequence one need not be restric- 
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ted to the construction of a single global solution dependent upon just one expan- 
sion parameter. Rather each of several expansion parameters defines an 
approximate solution that is valid in a limited region of the space-time. In addition 
the expansions that determine the solution in each limited region need not 
necessarily be the same. However, in the regions where two solutions overlap, one 
can identify certain arbitrary functions in one region with known functions in 
another, thereby matching the different solutions. With enough regions one can 
construct a solution that covers the entire space-time. 

This procedure, known as the method of matched asymptotic expansions 
(MAE) [Z], as powerful as it is, is limited by the requirement that the physical 
parameters of the system must be such that they yield small (compared to unity) 
dimensionless expansion parameters. In general relativity these expansion 
parameters may be a measure of the weakness of the gravitational field or the slow- 
ness with which source motions occur compared to the speed of light. Such 
methods unfortunately explore only a certain region of the parameter space 
available to more general solutions of the field equations. 

Of course numerical methods can be used to avoid the restriction to small expan- 
sion parameters and this results in an exploration of a greater portion of the 
parameter space of solutions. At the present time, practical considerations require 
that numerical methods applied to the equations of general relativity be made as 
efficient as possible. In addition, once a numerical solution is generated it must in 
some way be subjected to stringent tests in order to determine whether or not it is 
physically reasonable. This is particularly crucial in cases where the numerical 
solutions depend upon certain physical parameters whose values may be presently 
beyond the values for which experimental verification can be made. 

With these points in mind, we have begun a program that applies the philosophy 
of the method of matched asymptotic expansions to a technique that not only 
increases the efficiency of a numerical calculation but acts as a means of testing the 
consistency of the solution with reasonable physical assumptions. Simply stated, the 
procedure assumes that any relativistic system, consisting of a material source dis- 
tribution confined for all time within a compact volume, and surrounded by empty 
space, can be described analytically in a region far from that source by a causal 
solution. By this we mean that if the source is stationary prior to some given time 
t,, after which it becomes nonstationary and if, in addition, there exists in the 
exterior region a family of nonintersecting null cones labelled by the retarded coor- 
dinate U, then the field associated with the source is stationary for all retarded times 
prior to some retarded time uO. 

This notion of causality is of course required on physical grounds and leads to a 
unique form for the outer solution without the addition of such assumptions as the 
nonexistence of incoming radiation, or that the radiation must be everywhere out- 
going. A purely outgoing condition will certainly not hold if there is backscatter of 
radiation due to background curvature and/or nonlinear interactions of the field. It 
has also been demonstrated that causal solutions do exist for simple systems that 
violate the requirement that there be no incoming radiation. In this paper we shall 
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be concerned with the evolution that follows from Cauchy data given on a 
t = const. space-like hypersurface. We will not. however, raise the question of 
whether or not the initial data is consistent with the absence of incoming radiation 
at past null infinity. 

The matching of a causal analytic solution to a numerical solution has been 
employed in problems that model the behavior of an isolated source ematting 
gravitational waves that eventually propagate out to null infinity. Such systems if 
left to themselves are subject to radiative damping. For the simple but well-known 
problem consisting of an oscillator coupled to a scalar field [3], it has been 
demonstrated that the numerical methods allow one to extend our knowledge of 
the behavior of the model beyond the limited parameter space for which one can 
obtain approximate analytic solutions. This was necessary in order to demonstrale 
that the “monopole energy loss formula” derived from a purely analytic application 
of the method of matched asymptotic expansions -was only applicable for source 
motions rhat were slow compared to the velocity of light. 

In a second application of the method it was shown that in the presence of 
background curvature, for which it could no longer be assumed that the radiation 
field was purely outgoing, one could derive an approximate analytic solution to Ihe 
outer zone problem (in the region where the effects of the curvature become small). 
Furthermore, that solution could be effectively matched lo a numerical solution 
obtained in the region immediately surrounding the source where the curvature was 
strong [4]. Not only did this method prove to be effective in increasing the 
efficiency of the numerical code by imposing a realistic boundary condition, but i: 
also was useful in checking the accuracy of the numerical method within a large 
region where both the analytic and numerical solutions were valid. The fact that the 
analytic solution is connected directly to the boundary conditions at future null 
infinity helps solve the problem of how one characterizes the radiative part of the 
field in a local numerical calculation. 

In this paper we shall continue to utilize the same method in a model problem 
that involves a nonlinear self interaction; namely a 4’ theory. As in the curved 
space situation, the nonlinearity will not allow one to impose a purely outgoing 
radiation condition at finite distances from the source. Therefore an approximation 
procedure will be used to construct an analytic solution in a region far removed 
from the source. The validity of the approximate solution will extend from a finite 
radius out to future null infinity. A numerical solution can then be generated in the 
region containing the source and part of the empty space region surrounding it. In 
the region where the two solutions overlap the otherwise arbitrary functions 
appearing in the analytic solution can be matched to the numerical values they 
obtain in the region defined by the size of the finite diKerencing grid, thereby 
yie!ding a solution that covers the entire space-time. 

In the next section we shall describe the analytic nature of the model problem 
and the method for determining the causal solution in the outer region. Section 3 
will be devoted to the numerical methods used to calculate the behavior of ;he 
model in the source region where the nonlinearity is considered to be strong and 
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the motions rapid. In the final section we discuss the results of matching the 
numerical and analytic causal solutions and how one may use the latter to check 
the accuracy of the former over a rather large region of overlap. 

II. THE MODEL AND OUTER ZONE APPROXIMATION 

The model problem to be studied consists of a sphericafly symmetric scalar liela 
$(r, t) that is coupled to a nonrelativistic harmonic oscillator with an amplitude 
Y(r). Since the Lagrangian of the system contains a term (k/4) $4, representing the 
nonlinear self interaction of the field, the model is defined by the following system 
of equations. 

(a:-v2)*+k$3=;Ip(r) Y(f) (2.1) 

8: Y+w’Y=L5,” 4nr’pll/dr, (2.2 j 

where o is the uncoupled frequency of the oscillator, i is the coupling constant, and 
k gives the strength of the nonlinearity. The source density is simply the Heaviside 
step function 

p(r)= O(1 -rJr 
i 

A 
r<l 

, r> 1. (2.3) 

One now introduces the spherically symmetric function q5(r, I) defined by the 
relation 

Il/(r, t) = fj(r, t)/r. (2.4) 

It will be assumed that in some region outside of the compact volume surrounding 
the source there exists a family of nonintersecting null cones labelled by the retar- 
ded null coordinate u = t - r. One may now rewrite Eq. (2.1) in terms of 4 and the 
variables r and U. In the vacuum region one has the homogeneous equation 

(2.5) 

An approximate solution to this equation can be constructed by expanding 4 in 
successive powers of k, 

4= C k”4,. 
?I=0 

Therefore the first approximation to Eq. (2.5) is just the linear equation 

@~,a, - a:, 40 

(2.6) 

(2.7) 
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which has as a solution 

43=40(u). (2.8i 

The second approximation to the wave equation is 

Since 4, is independent of r this equation may be integrated once with respect to ; 
to obtain 

and this equation has as a causal solution 

Similar expressions may be obtained for the higher order approximations to the 
function 4. It can be seen that do is the generating function for all the other higher 
order terms in the expansion for (b. In this sense d,, may be considered equivalent to 
the “news function” [S] in a Bondi system of well-stacked null cones for general 
relativity. All information concerning the behavior of the system is contained in the 
function 4, and this uniquely determines the evolution of the system. 

Since this simple problem is intended to model the behavior of the radiative part 
of the gravitational field, it must be emphasized that we are concerned here only 
with the purely radiative part of the scalar field as it propagates on a zero mean 
field background. The method of solution presented here of course is not apphcable 
to the static nonlinear field. Just as the “news” in a general relativistic system 
vanishes for a stationary space-time, in the absence of a time dependent source 
term, do = 0 here. 

The dynamics of the system is known to be invariant to a resealing of the field 
and the oscillator amplitude. If one defines the resealed functions 

4 = *ia and r= Y/a; c? = const. 

then the nonlinear coupling constant R becomes k = kx2 and the Eqs. (2.11 and (2.2) 
become 
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while the parameters 1 and o remain unaffected. Unless otherwise specified, in the 
remaining sections it will be understood that we are dealing with the resealed 
equations such that R is normalized to unity, and therefore the bars over the 
resealed quantities will be dropped. 

III. THE NUMERICAL ANALYSIS OF THE MODEL 

In this section we shall discuss the finite differencing scheme used to analyse the 
set of Eq. (2.1) and (2.2) in the region that contains the source and extends far 
enough into the vacuum region that it overlaps with a valid second-order 
approximation to the vacuum field equation. Given the initial values of the 
functions 4, a,& Y, and 8, Y on a t = const. space-like hypersurface, the field 
equation and the equation of motion for the oscillator amplitude uniquely deter- 
mine the subsequent evolution of the model. At the present it will be assumed that 
the initial data is given as 

fp = a, I$ = 0, Y=O, d, Y=oY, Qr at t = 0. (3.1) 

Later, in order to determine the model’s sensitivity to initial conditions, other sets 
of initial data will be employed. This test will be discussed in the next section. 

The numerical solution to the system (2.1) is obtained using either of two dif- 
ferent leapfrog finite differencing schemes. In both we introduce the function 
f(r, t) = rrl/(r, t). Introducing the auxilliary function g(r, t), the second-order wave 
equation may be written in the following as a system of equations where all 
derivatives (temporal and spatial) are of first order. 

B,f=B,g-$J-r f3(t’,r)dt’ % (3.2a) 

(3.2b) 

A simple grid on which the functionJ’(r, t) is evaluated at the integral space and 
time points and g(r, t) is evaluated at the half-integral points can be set up. The 
numerical method of evaluating the time integral of the nonlinear term is, for the 
case of slowly varying fields, a simple trapezoidal scheme. For more rapidly varying 
systems, a higher order (e.g., Simpson’s rule) integration scheme is employed in all 
calculations with o 3 1. The finite differenced equations are then simply 

(3.3a) 
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where I and J label temporal and spatial grid points, respectively. The radial step 
size is chosen such that there is an integral number of steps. Iv, from r=O to the 
boundary of the source. 

A second, and more straightforward, method defines hj~. r) as the time derivative 
of,f(r, t) and employs the second spatial derivative ofj’(r, t). In this method bothf 
and h are located at integral radial points. The leapfrogged evolution occurs with ,r’ 
evaluated on the integral time steps and /z evaluated on the half integral time steps. 

i 3.4a ) 

j++ 1.1 = /*:- ii2 + 
J & Cf:..+?ft.+f:+,l 

----$$ir:,';i AtArf@jN-J) I”. 

The equation of motion (2.2) is also finite differenced using the leapfrog method 
(where I’ and 9 are evaluated on the integral and half-integral time steps respec- 
tively) and once again the integrals are evaluated either by the trapezoidal method 
or Simpson’s rule depending upon the oscillator frequency. 

The boundary conditions at r = 0 are such that due to the spherically symmetric 
nature of the problem the functionfand its time derivative must vanish for all time 
if it is to satisfy the initial conditions (3.1) at r= 0. In the exterior region it will be 
required that the proper boundary conditions must accurately account for the true 
nonlinear propagation of the radiation occuring at a finite distance from the source. 

The solution clearly must be outgoing at future null infinity and it is there that 
one has an unambiguous boundary condition. However, numerical schemes are 
limited to finite regions. While one could compactify the outer region such that 
“infinity is made finite” (a procedure that has been used in numerical studies of the 
characteristic initial value problem [6]) the value of numerical relativity lies in its 
ability to calculate the complicated dynamics in the source region. 

In what follows we shall demonstrate that the second-order solution IO the 
homogeneous equation derived in the previous section can provide an outer boun- 
dary condition at a finite distance from the source, thereby reducing borh t&e 
amount of numerical and analytic work needed to obtain a global solution. This 
method increases the efficiency of the numerical code by limiting the number of grid 
points needed to carry out the computation and reduces the order of 
approximation needed in the analytic solution by performing the matching ai an 
appropriate distance from the source. It will also be demonstrated that once the 
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boundary condition is set up, the matching of the analytic and numerical solutions 
can be used over a finite region to test the accuracy of both the numerical and 
analytic schemes. 

Figure 1 represents the manner in which the retarded null cones are attached to 
the numerical grid at a radius T,~, called the matching radius. The numerical value 
of j(r, t) is known at the intersection of r,,, with the t = const hypersurface. The 
arbitrary function of u appearing in the second-order approximate analytic solution 
for &u, r) is then determined by the same numerical value of J: Since Eqs. (2.8) 
and (2.11) express how the field propagates along the u = const. null cones as a 
function of r, one can calculate analytically the value of the field at the point 
(Y,, + d~,~, t + dr) on the same null cone. This procedure of matching the arbitrary 
function in the analytic solution to the numerical solution for that same function 
determines a solution that is valid over the entire space-time. 

Rewriting Eqs. (2.8) and (2.11) in their finite differenced form, the condition at 
the matching radius is 

S(~,r,~)=io(uj+fliAumC’ 
qS;(l AM - 1) 

I=0 (u+ l-IAu+2r,,j (3.5) 

where the integer IW is the number of null cone slices between the time that do first 
begins to change to the time at which the matching is performed. 

Notice that the value g or h on the next half-time slice can be determined solely 
from the information on how the function f propagates along the null cone. This 
matching procedure therefore limits the types of finite differencing schemes that can 
be employed. Clearly (except in the case of linear propagation along flat null 
cones), it would be difftcult to determine how the auxilliary functions g and h 
propagate along the null cones. Therefore finite differencing schemes that require a 
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FIG. 1. The grid used for the leapfrog scheme, where the functionfis calculated numerically at the 
positions represented by the open circles. The function g is calculated at the closed circle sites (or in the 
other scheme, h is evaluated on the 4 time steps at the same spatial locations asf). When A/ = Ar, the 
null cones intersect the numerical grid at the integral time and space points. The matching procedure 
provides the boundary condition at the sites marked by the triangles. 
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knowledge of both f and g (or h) at the same space and time points must he 
excluded from the matching procedure. Examples of such methods are the first- 
order Lax scheme and the Lax-Wendroff scheme, both of which yield stable finite 
difference equations for wave equations. 

While the present calculation uses 4 t = 4r throughout, Fig. 1 represents a grid for 
a more general situation where 4 t # 4r at r,,,. Depending upon the null1 cone struc- 
ture (i.e., in situations where the null coordinate uf t - r) and:or the stability 
requirements (e.g., Courant conditions) of the differencing scheme, the ratio drjd~,,~ 
need not be unity or even constant at each time slice. All that is required is that the 
values of f( I’,,,, t) and f(r, + dr,,,, I + dt) be such that they he along a II = const. 
nonintersecting null cone and on two successive time slices. The values of dr,, and 
4r can always be adjusted to meet that requirement. A discussion of the inter- 
polation methods used to accomodate varying grid spacings can be found in 
Ref. [4], where matching conditions in curved space-times are considered. 

For a problem such as the one considered here, there is a price to pay. The 
analytic solution is given in terms of an integral over the entire time that 4 
undergoes its evolution. While the causal solution is therefore nonlocal in that it 
depends upon its entire past history, its ability to ‘“remember” that past fades over 
time. From a practical point of view one can truncate the summation process in the 
evaluation of the integrals over the previous history since the major contribution to 
the sum in Eq. (3.4) comes from values not far removed from the retarded time at 
which the matching is performed. Clearly the expression in the denominator grows 
as U-U’. Therefore only a finite number of elements need to be included in rhe 
integral expression for the second-order solution. 

In addition to providing a realistic boundary condition, the procedure outlined 
above can be considered to be a true matching of the numerical and analytic 
solutions in the finite region where the validity of the two solutions overlap. Thus 
the analytic solution can, in addition to the numerical solution, be used to deter- 
mine the solution at grid points located inside the matching radius. Knowing the 
value of the solution at r,, one can follow the family of null cones farther in toward 
the source (provided that the corrections of order l/r are small compared to the 
accuracy of the numerical solution) and check the consistency of the numerical 
values of the function f(r, t) at the points at which the nuI1 cones intersect the 
? = const. time slices. 

This method of checking the accuracy of both the numerical and analytic 
solutions has a further advantage in that it is not just a heck of the numerical 
solution but also allows one to determine the region over which the analytic 
solution is valid. Once the numerical and analytic solutions are shown to agree over 
a finite range of values of r, then the value of the matching radius can be chosen as 
the minimum value for which agreement can be found. This further increases the 
efficiency of the matching method for a numerical calculation by decreasing the 
number of necessary grid points. 



292 ANDERSON APjD HOBILL 

IV. NUMERICAL RESULTS AND DISCUSSION 

The system examined here, like the linear models studied in Refs. 13, 41 
undergoes damping due to the emission of radiation as long as the coupling 
between the source and the field is not too large. For large values of A, the energy of 
the system will not be positive definite and an instability results. This peculiarity 
exists in all models where the field and the source are coupled in the manner 
prescribed by Eq. (2.2) and has been discussed in previous work [3]. For the 
remainder of this paper it will be assumed that A is small enough to ensure that the 
oscillator is always damped. For such problems there exist two quantities of 
physical interest: the damping “constant” j? and the oscillator frequency, 0. The 
values of these two quantities can be found directly by fitting the numerical solution 
for the oscillator amplitude to a solution of the form 

Y = Y,e pp’ sin tit. (4.1) 

In general both p, the damping term, and 0 are time dependent functions, but, for 
late times or sufficiently small values of ,I they approach constant values. It is these 
values that we wish to determine. 

Testing the Matching Methods. 

As a preliminary test of the accuracy of the matching technique and a 
demonstration of the scale invariance, the behavior of the solution under resealing 
was examined. As was expected the values of /I and W were independent of scaling 
and depended only on the parameters ,I and o. The effect of scaling can be seen in 
Fig. 2, where the oscillator amplitude is plotted as a function of time. The damping 
term and the frequency of the oscillator determined from Eq. (4.1) are equal to 
within 0.05 % for both runs: one where R = 4, y,, = 0.5 and the other where k = 1, 
Y, = 1. In both cases the values of 1 and w are the same. As expected, the field 4 
exhibits the same scaling relation as the amplitude. This scaling behavior was 
obeyed by both of the finite differencing schemes presented in the previous section. 

A comparison of the differences in the values of B and 0 that resulted from using 
the two numerical schemes was made and it was found that the direct method 

FIG. 2. An example of the scale invariance of the nonlinear oscillator equations under the transfor- 
mation k = k/s’, Y= ~CZ, and d = 4~ for GL = 2. The step sizes are AI = dr = & with Y, = 1.0, Q = 0.5, 
/z = 0.2, and T,,, = 20. The values of /? and w agree to within 0.05 9’0. 
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which utilized the second radial derivative was subject to a greater damping and 
dispersion than was the method that used the first derivatives with respect to the 
radial distance. The results of the second derivative scheme were also affected more 
by changes in step size. While a decrease in the step sizes (from i/l0 to I/SO) did 
not significantly change the behavior of the oscillator as calculated by the method 
using the function g, the evolution calculated with h approached that determined by 
the former with decreasing step size. Nontheless. even at the crudest spacing 
(dr = dr = l/10) the differences in /3 were always less than 5 ‘76 while the differences 
in ti never exceeded 1%. Figure 3 shows an example of the differences that resulted 
from a calculation of the oscillator amplitude using the two methods. Since the two 
numerical methods behaved similarly to the tests that compared effects of matching 
to the first- and second-order approximate analytic solutions, we shall not give the 
results of both methods in order to avoid redundancy. The sample calculations that 
are presented in this work will be taken from the first-order spatial derivative 
method. 

One of the first tests to be performed on the model was a comparison of the dif- 
ferences in the oscillator behavior resulting from matching the numerical solution :o 
both the first- and second-order approximate analytic solutions at different radii. 
The calculations were carried out with fixed values of i and ~0. The matching radius 
was allowed to vary in the range 5 < rn7 ~40 for both the first- and second-order 
approximations and the evolution was allowed to proceed to t = 500 at which time 
the variation in the parameters of interest was less than a few parts in 10’ between 
each oscillation. 

The results from calculations performed on a DEC system 1090 (usrng a Fortran- 
‘77 compiler with a 32-bit single precision default) are shown in Table I. Inchrded in 
the table are the CPU times needed to carry out the calculations. To increase tne 
efficiency the sum appearing in Eq. (3.5) was truncated to include only those field 
values that preceeded the matching time by 5O/du time steps For comparison. a 
single calculation was performed where the integral in the second-order solution 
was evaluated over the entire dynamical history of the model and the information 
associated with that calculation is included. 

FIG. 3. A comparison of the two differencing schemes presented in Section III for an oscillator with 
w = 0.3, i = 0.1, Y, = 1.0, with T,” = 20. The step sizes for the calculation are 3r = dr = &. The curves 
labelled I and II plot, respectively, the schemes that use the first-order and second-order spatial 
derivatives. The differences between the values of fi and tG calculated using :he two methods scales 
directly Lvith the scaling in the step size. 
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At first sight it would appear that the corrections due to the nonlinear interaction 
are negligible, particularly at large matching radii. However, it is at intermediate 
times that the differences in the evolution resulting from different matching con- 
ditions become evident. For this reason the values of p and CT at t = 100 also 
included in Table I. The fact that the matching procedure significantly affects the 
intermediate time behavior of the oscillator is due to the following: At early times 
both the first- and secon-order approximations agree to within 0.01 o/o simply 
because the second-order integral does not make an appreciable contribution to the 
solution until enough time has passed to record the nonvanishing history of the 
field evolution. The differences between the first- and second-order approximations 
are therefore the greatest when the field obtains its largest amplitude. At much later 
times the field has been damped to such a small value (less than unity) that the 
cubic nonlinearities make the contributions (to the second-order integral) from the 
immediate past very small. In addition, the contributions coming from the larger 
field values are diluted by the fact that they had occurred far enough in the past 
that the term U-U’ appearing in the denominator is large. 

The integral appearing in the second-order approximation takes into account the 
backscatter due to nonlinear effects and a similar situation exists in a model 
described by a linear wave equation embedded in a fixed curved background space- 
time [4]. In that case, however, the effects of backscatter are more pronounced 
since the nonzero curvature introduces a linear, rather than cubic, dependence on 4 

TABLE I 

Results of Different Matching Conditions 

0 = 0.4 A = 0.2 Yo = 15.0 

w B (5 P 
r=soo f=500 f=lOO f=lOa Time( CPU) 

a. First approximation 

5. 0.30784 
10. 0.30784 
20. 0.30783 
40. 0.30783 

0.022342 0.31401 0.02002 1 0:30.19 
0.022609 0.31342 0.020007 0 : 50.99 
0.022987 0.31352 0.019916 1:32.15 
0.023088 0.31355 0.019938 2 : 58.93 

b. Second approximation 

5. 0.30784 
10. 0.30784 
20. 0.30783 
40. 0.30783 

0.023608 0.31389 0.019244 0:53.85 
0.022672 0.31357 0.019749 1: 14.67 
0.023132 0.31372 0.019740 2 :03.07 
0.023209 0.31370 0.019700 3 : 25.74 

c. Second approximation (ooer entire dynamicnl history) 

20. 0.30783 0.023206 14:06.72 
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FIG. 4. The effects of matching to the first- and second-order approximate solutions (curves !abel!ed 
“1” and “7”, respectively) at r ,,, = 40. Here Y0 = 4.0. (0 = 0.8, and A = 0.5. Initially (a) the two methods 
are in agreement until (b) the second-order integral is large enough to make its contribution felt After 
the field has damped to such an extent (c) that the nonlinerity becomes unimportant, the late time 
dynamics differ only by a constant phase (Jr = 4r = 4). 

in the integral and the background, being fixed, does not decay in time. Figure 4 
shows what happens to the oscillator behavior when the second-order integral is 
ignored compared to matching the numerical solution to the complete second-order 
solution. In agreement with Table I it can be seen that at intermediate times the 
damping is greater when the solution is matched to the purely outgoing condition. 
At very late times, the perturbations due to the differences in the approximations 
are damped out enough that the asymptotic values of /I and 0 are equal to within 
0.01%. However, the phase difference that develops as a result of the different 
matching procedures remains fixed at a constant value during the late time 
evolution 

A demonstration of the consistency of the matching method is given in Table II. 
Since the analytic solution is known as a function of r and t, one may determine the 
solution at other points on the numerical grid. The easiest points to determine are 
those that lie along the characteristic surfaces. Therefore the location of the field 
points given in Table II are located on the null cones. 

The differences between the second- and first-order approximations are of the 
order of @,/Y and for late times these differences are small if the damping of the 
oscillator is significant. The results shown in Table II are chosen to coincide with 
the early and intermediate time scales where the differences are most noticabfe. The 
(single precision) numerical values of the functionf(r, t) are given together with the 
values of the second-order integral along chosen nuil cones at various fixed values 
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TABLE II 

Matching the Numerical and Analytic Solutions along the Null Cones 

fx 10-J fx 10-Z j-x 10-Z .fX 10-2 
II 4 (b, x lo-* I. q5, x 10-1 I, q5,x 10-z I, (b, x 10-z 

(r = 10) (r=20) (r=30) (r=40) 

0 10, 3.955130 20, 3.95.5130 30. 3.955130 40, 3.955130 
0.000000 0.000000 0.000000 0.000000 

10 20, -3.110119 30, -3.110136 40, -3.110144 50, -3.110148 
0.000039 0.000023 0.000016 0.000012 

40 50, 1.420980 60, 1.421011 50, 1.421011 60, 1.421011 
-0.000007 0.000005 0.000004 0.000004 

80 90, 1.773833 I@-! 1.773832 110, 1.773832 120, 1.773830 
0.000012 0.000011 0.000008 O.CWOO6 

120 130, 1.501759 140, 1.501756 150, 1.501754 160, 1.501752 
0.000006 0.000005 0.000004 0.000003 

of r. At early times the solution is purely outgoing and at later times when the 
U- U’ term appearing in the second-order integral is small the corrections are 
approximately described by F(u)/r, where F(U) = tk s; 4; &‘. At later times the 
second-order correction becomes a more complicated function of u and r but even- 
tually damps out to a constant value. The fact that the numerical values of the field 
are not constant along a chosen null cone demonstrates the necessity of including 
the corrections to the purely outgoing vacuum solution if the matching is to be 
performed near the source. 

The importance of matching to the correct analytic solution can clearly be seen 
for a linear field, where the general solution to the homogeneous equation is 
+ = LW + h&W H ere v is the ingoing null coordinate. One could very well 
have chosen a differencing scheme that used the advanced solution as a boundary 
condition. However, it would then be found that the numerical solution would not 
be constant along a chosen incoming null cone. If the problem is such that it 
evolves into the future from given initial data that is nonzero only in the finite 
region bounded by the numerical grid, then one is forced to accept the retarded 
solution as giving not only the outer boundary condition but the proper matching 
as well. 

Dependence on Initial Data 

As mentioned previously, a characteristic of all models employing a coupling of 
the kind given in Eq. (2.2) is that they undergo damping for small amplitude 
oscillations and small coupling constants. That they are also insensitive to changes 
in the initial conditions can be easily demonstrated experimentally by imposing 
different Cauchy data. The one requirement is that the initial total energy given by 

E total = 
J { 
‘d’x ~(c’,(lrj2+~(V~j2-1Ypll,+%~~ +;I(;, Yj2+dY2] (4.2) 
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must be finite. Therefore, nonzero field values in a finite spatial region were 
introduced into the initial data (e.g., qb=q$,O(r--r,)j as were nonzero values of its 
derivative. The changes in the values of /3 and (5 were only noticable on a time scale 
of the order of the light crossing time across the distance over which the field or its 
derivative were nonzero. As long as the initial conditions for r+!~ and i’, rj vanish out- 
side of some region bounded by Y,, < I’,, the system always damped to the same 
values of /? and 0 for given values of 1 and CO. 

The significance of the above is important. If our model reflects many of the 
properties of a system such as the binary pulsar then our lack of knowledge concer- 
ning the initial conditions of radiatively damped systems need not be of too great a 
concern as long as those initial conditions are physically reasonable and consistent 
with isolation of the system. Since generic initial conditions such as those given by 
Eq. (3.1) must include some “incoming radiation.” the characterization of a non- 
incoming radiation initial condition is not important to the late time evolution of 
the system. This behavior is consistent with the conjecture by Schutz [g] that 
isolated radiating systems will undergo damping (after the time needed for iigbt to 
traverse the compact source) for all but a very special class of initial conditions, 

Related to this point is the fact that small perturbations occurring during the 
evolution of the system (in the case at hand these come from imprecise matching 
conditions) eventually damp out and these too are relatively unimportant to the 
late time behavior of the model. Therefore it would seem that in most long-lived 
astrophysical systems, dominated by the gravitational interaction, the presently 
observed evolution could have evolved from any number of initial conditions or 
even from any number of different evolutionary scenarios. The “fading memory” 
aspect of the causal solutions. however, leads to asymptotically similar sohttisns. 

Linear vs Nonlinear &fleets 

Finally the effects of the nonlinear self-interacting field were compared to the 
linear model previously studied in Ref. [3]. Figure 5 shows that the damping of the 
oscillator is more pronounced for the nonlinear case than it is for its linear counter- 
part when the value of the coupling 2 is large enough to be close to the value for 

-IOiL/ 
50 LOO 
t t 

FIG. 5. The difference in behavior between the linear and nonlinear oscillator fcr (a) the underdam- 
ped case where 0) = 0.4, /1= 0.2, and I;, = 16.0 and for the (b) the critically damped linear oscillator 
where cu =0.8, i, =0.6, and YO= 1. At the value of ,? for which the linear model becomes Gnstabie 
(1 - 0.625!. the nonlinear oscillator remains overdamped and only becomes unstable at ,? -- 0.64.7. in 
both cases r,,, = 20 and dr = dr = &. 
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critical damping. This also means that the nonlinear oscillator is also more stable. 
That this is the case can be seen also by noting that at the critical value of the 
coupling for which the linear oscillator becomes unstable and blows up exponen- 
tially, the nonlinear oscillator continued to be damped. This is due to the addition 
of the positive definite energy density contribution coming from the quartic non- 
linearity in the hamiltonian. Since similar (though quadratic) nonlinearities appear 
in general relativity it would seem that the gravitational radiation damping of a 
system could render marginally stable Newtonian systems stable. 

As in the case of the linear model, the problem described here can also be studied 
for rapidly oscillating sources (even in the relativistic limit). Such situations cannot 
be analyzed by purely analytic approximation techniques alone. Only a numerical 
solution in the source region is capable of handling the complications associated 
with such motions. The analytic solution, on the other hand, makes the necessary 
connection of the numerical solution to regions far removed from source. In 
Ref. [3] it was demonstrated that the “slow motion monopole energy loss formula” 
derived from an energy balance equation that related the energy loss in the source 
region to the energy flux measured far from the source broke down for rapidly 
oscillating sources. This formula is similar to the linearized quadrupole energy loss 
formula derived for isolated slow-motion general relativistic sources. In addition to 
being invalid for fast motions, the linearized energy loss formula breaks down when 
the nonlinearities become important. This behavior is shown in Fig. 6. 

b 
I’ : 
t ‘” 7 

FIG. 6. The energy loss rate calculated from the change in the oscillator amplitude, Y (dotted lines) 
and compared to the rate determined from the far field at Y,, = 20 (solid lines ). The energy balance 
equation is derived from an analytic application of the MAE technique and is restricted to slow source 
motions and weak nonlinearities. Therefore it is valid for in the case (a), where o = 0.4, /1= 0.2. Y0 = 1.0, 
and k = 1.0. For fast motions (b) with UJ = 1.0, A= O.,, 3 Y,, = 1.0, and k = 1.0, the energy balance formula 
breaks down as it does for the strongly nonlinear case (cj given by the parameters w =0.5, 1= 0.1, 
Y, = 16.0, and k = 4.0. 
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The energy balance equation derived from the method of matched asymptotic 
expansions [7] can be written in the form 

where the left-hand side of the equation represents the energy loss resulting from 
the change in the oscillator amplitude and the right-hand side represents the energy 
loss determined from the flux of radiation through the spherical surface 
surrounding the source with a radius large compared to the source radius. 
Figure 6a shows a comparison of the two methods of calculating the energy loss for 
a slow motion weakly nonlinear system. Initially the two calculations do not agree 
but within one light crossing time it can be seen that Eq. (4.3) is valid to a high 
degree of accuracy. Figures 6b and c demonstrate the energy loss calculations for a 
fast motion source and a strongly nonlinear system, respectively. In both cases the 
source energy loss exceeds the energy loss calculated from the far field flux, 

In conclusion it has been demonstrated that the method of matching a numerical 
solution to a known general approximate or exact analytic solution for a certain 
problem in a region where the two solutions overlap is advantageous to both 
methods. The numerical solution allows one to explore regions of the parameter 
space inaccessable to analytic techniques alone. In addition the form of the analytic 
solution is specified by the criterion that the two solutions must match over a finite 
region of space-time. The analytic solution (if it does not restrict the numerical 
methods employed) can be very effective in improving the efficiency of the 
numerical calculation as well as characterizing the physically significant quantities 
that eventually will be measured by experimental means. 
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